Cell Cycle-Regulated Transcription through the FHA Domain of Fkh2p and the Coactivator Ndd1p

نویسندگان

  • Zoulfia Darieva
  • Aline Pic-Taylor
  • Joanna Boros
  • Adonis Spanos
  • Marco Geymonat
  • Richard J. Reece
  • Steven G. Sedgwick
  • Andrew D. Sharrocks
  • Brian A. Morgan
چکیده

Recent studies in Saccharomyces cerevisiae by using global approaches have significantly enhanced our knowledge of the components involved in the transcriptional regulation of the cell cycle. The Mcm1p-Fkh2p complex, in combination with the coactivator Ndd1p, plays an important role in the cell cycle-dependent expression of the CLB2 gene cluster during the G2 and M phases ([4-7]; see [8-10]for reviews). Fkh2p is phosphorylated in a cell cycle-dependent manner, and peak phosphorylation occurs coincidentally with maximal expression of Mcm1p-Fkh2p-dependent gene expression. However, the mechanism by which this complex is activated in a cell cycle-dependent manner is unknown. Here, we demonstrate that the forkhead-associated (FHA) domain of Fkh2p directs cell cycle-regulated transcription and that the activity of this domain is dependent on the coactivator Ndd1p. Ndd1p was found to be phosphorylated in a cell cycle-dependent manner by Cdc28p-Clb2p, and, importantly, this phosphorylation event promotes interactions between Ndd1p and the FHA domain of Fkh2p. Furthermore, mutation of the FHA domain blocks these phosphorylation-dependent interactions and abolishes transcriptional activity. Our data therefore link the transcriptional activity of the FHA domain with cell cycle-dependent phosphorylation of the coactivator Ndd1p and reveal a mechanism that permits precise temporal activation of the Mcm1p-Fkh2p complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p.

The forkhead transcription factor Fkh2p acts in a DNA-bound complex with Mcm1p and the coactivator Ndd1p to regulate cell cycle-dependent expression of the CLB2 gene cluster in Saccharomyces cerevisiae. Here, we demonstrate that Fkh2p is a target of cyclin-dependent protein kinases and that phosphorylation of Fkh2p promotes interactions between Fkh2p and the coactivator Ndd1p. These phosphoryla...

متن کامل

Transcriptional Coactivator CBP Facilitates Transcription Initiation and Reinitiation of HTLV-I and Cyclin D2 Promoter

HTLV-I is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Taxi, the major activator of this virus, is a 40- kDa (353 amino acid) phosphoprotein, predominantly localized in the nucleus of the host cell, which functions to trans-activate both viral and cellular promoters. Recently it has been shown that HTLV-I a...

متن کامل

A Competitive Transcription Factor Binding Mechanism Determines the Timing of Late Cell Cycle-Dependent Gene Expression

Transcriptional control is exerted by the antagonistic activities of activator and repressor proteins. In Saccharomyces cerevisiae, transcription factor complexes containing the MADS box protein Mcm1p are key regulators of cell cycle-dependent transcription at both the G2/M and M/G1 transitions. The homeodomain repressor protein Yox1p acts in a complex with Mcm1p to control the timing of gene e...

متن کامل

Regulation of gene expression during M-G1-phase in fission yeast through Plo1p and forkhead transcription factors.

In fission yeast the expression of several genes during M-G1 phase is controlled by binding of the PCB binding factor (PBF) transcription factor complex to Pombe cell cycle box (PCB) promoter motifs. Three components of PBF have been identified, including two forkhead-like proteins Sep1p and Fkh2p, and a MADS-box-like protein, Mbx1p. Here, we examine how PBF is controlled and reveal a role for ...

متن کامل

Fkh2p and Sep1p regulate mitotic gene transcription in fission yeast.

In the fission yeast Schizosaccharomyces pombe, several genes including cdc15+, spo12+, fin1+, slp1+, ace2+ and plo1+ are periodically expressed during M phase. The products of these genes control various aspects of cell cycle progression including sister chromatid separation, septation and cytokinesis. We demonstrate that periodic expression of these genes is regulated by a common promoter seq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003